A Novel Approach for Automatic Palmprint Recognition
نویسندگان
چکیده
In this paper, we propose an efficient palmprint recognition scheme which has two features: 1) representation of palm images by two dimensional (2-D) wavelet subband coefficients and 2) recognition by a modular, personalized classification method based on Kernel Principal Component Analysis (Kernel PCA). Wavelet subband coefficients can effectively capture substantial palm features while keeping computational complexity low. We then kernel transforms to each possible training palm samples and then mapped the high-dimensional feature space back to input space. Weighted Euclidean linear distance based nearest neighbor classifier is finally employed for recognition. We carried out extensive experiments on PolyU Palmprint database includes 7752 palms from 386 different palms. Detailed comparisons with earlier published results are provided and our proposed method offers better recognition accuracy (99.654%).
منابع مشابه
Palmprint Recognition Under Unconstrained Scenes
This paper presents a novel real-time palmprint recognition system for cooperative user applications. This system is the first one achieving noncontact capturing and recognizing palmprint images under unconstrained scenes. Its novelties can be described in two aspects. The first is a novel design of image capturing device. The hardware can reduce influences of background objects and segment out...
متن کاملFourier Spectral of PalmCode as Descriptor for Palmprint Recognition
Study on automatic person recognition by palmprint is currently a hot topic. In this paper, we propose a novel palmprint recognition method by transforming the typical palmprint phase code feature into its Fourier frequency domain. The resulting real-valued Fourier spectral features are further processed by horizontal and vertical 2DPCA method, which proves highly efficient in terms of computat...
متن کاملTwo novel characteristics in palmprint verification: datum point invariance and line feature matching
As the first attempt of automatic personal identification by palmprint, in this paper, two novel characteristics, datum point invariance and line feature matching, are presented in palmprint verification. The datum points of palmprint, which have the remarkable advantage of invariable location, are defined and their determination using the directional projection algorithm is developed. Then, li...
متن کاملLocal Derivative Pattern with Smart Thresholding: Local Composition Derivative Pattern for Palmprint Matching
Palmprint recognition is a new biometrics system based on physiological characteristics of the palmprint, which includes rich, stable, and unique features such as lines, points, and texture. Texture is one of the most important features extracted from low resolution images. In this paper, a new local descriptor, Local Composition Derivative Pattern (LCDP) is proposed to extract smartly stronger...
متن کاملArtificial Bee Colony Based Multifeature Recognition
This paper presents a new approach to improve the recognition performance of existing authentication systems based on palmprint. The technique presented extracts multiple features namely, minutiae, texture and ridge from the palmprint image using novel algorithms. The images are then classified using Artificial Bee Colony Classifier. The proposed palmprint approach proves to be superior to exis...
متن کاملPalmprint Recognition Using Directional Representation and Compresses Sensing
In this study, based on directional representation for palmprint images and compressed sensing, we propose a novel approach for palmprint recognition. Firstly, the directional representation for appearance based approaches is obtained by the anisotropy filter to efficiently capture the main palmprint image characters. Compared with the traditional Gabor representations, the new representations ...
متن کامل